PD - 95378

 I_D

59A

SMPS MOSFET

 V_{DSS}

100V

IRFB59N10DPbF IRFS59N10DPbF IRFSL59N10DPbF

HEXFET® Power MOSFET

R_{DS(on)} max

 0.025Ω

Applications

- High frequency DC-DC converters
- UPS / Motor Control Inverters
- Lead-Free

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Ter	TEN	Ter .
TO-220AB	D ² Pak	TO-262
IRFB59N10D	IRFS59N10D	IRFSL59N10D

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	59	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	42	Α
I _{DM}	Pulsed Drain Current ①	236	
P _D @T _A = 25°C	Power Dissipation ⊘	3.8	W
$P_D @ T_C = 25 ° C$	Power Dissipation	200	
	Linear Derating Factor	1.3	W/°C
V_{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	3.3	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw®	10 lbf•in (1.1N•m)	

Typical SMPS Topologies

- Half-bridge and Full-bridge DC-DC Converters
- Full-bridge Inverters

IRFB/IRFS/IRFSL59N10DPbF

International
Rectifier

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100	_		V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.11	_	V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		_	0.025	Ω	$V_{GS} = 10V, I_D = 35.4A$ ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.5	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current		_	25	μA	$V_{DS} = 100V$, $V_{GS} = 0V$
				250		$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 30V
	Gate-to-Source Reverse Leakage		_	-100] ''^ [$V_{GS} = -30V$

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{fs}	Forward Transconductance	18	_		S	$V_{DS} = 50V, I_{D} = 35.4A$
Qg	Total Gate Charge		76	114		I _D = 35.4A
Q _{gs}	Gate-to-Source Charge		24	36	nC	$V_{DS} = 80V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		36	54		V _{GS} = 10V, ⊕
t _{d(on)}	Turn-On Delay Time		16	_		$V_{DD} = 50V$
t _r	Rise Time		90	_	ns	$I_D = 35.4A$
t _{d(off)}	Turn-Off Delay Time		20	_	110	$R_G = 2.5\Omega$
t _f	Fall Time		12			V _{GS} = 10V ④
C _{iss}	Input Capacitance		2450			$V_{GS} = 0V$
Coss	Output Capacitance		740	_		$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance	_	190	_	pF	f = 1.0MHz©
Coss	Output Capacitance		3370	_		$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		390			$V_{GS} = 0V$, $V_{DS} = 80V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		690			V _{GS} = 0V, V _{DS} = 0V to 80V ⑤

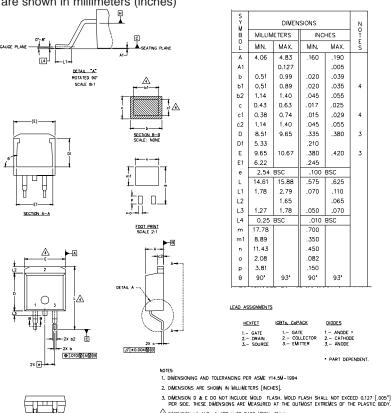
Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy②		510	mJ
I _{AR}	Avalanche Current①		35.4	Α
E _{AR}	Repetitive Avalanche Energy①		20	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _θ JC	Junction-to-Case		0.75	
R _{0CS}	Case-to-Sink, Flat, Greased Surface ©	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient©		62	
$R_{\theta JA}$	Junction-to-Ambient⑦		40	

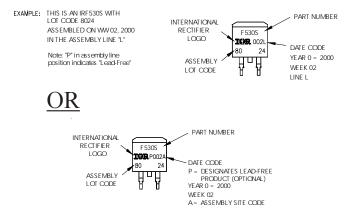
Diode Characteristics


	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			59		MOSFET symbol
	(Body Diode)	59		A	showing the	
I _{SM}	Pulsed Source Current			236	1	integral reverse
	(Body Diode) ①	23	230		p-n junction diode.	
V_{SD}	Diode Forward Voltage	_	—	1.3	٧	$T_J = 25^{\circ}C$, $I_S = 35.4A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time	_	130	200	ns	$T_J = 25^{\circ}C, I_F = 35.4A$
Q _{rr}	Reverse RecoveryCharge	_	0.75	1.1	μC	di/dt = 100A/µs - ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

International IOR Rectifier

IRFB/IRFS/IRFSL59N10DPbF

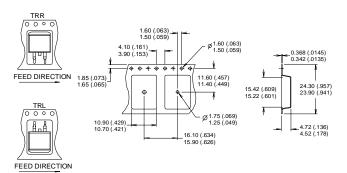
D²Pak Package Outline

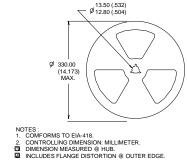

Dimensions are shown in millimeters (inches)

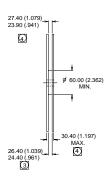
ADMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

5. CONTROLLING DIMENSION: INCH.

D²Pak Part Marking Information




International TOR Rectifier


IRFB/IRFS/IRFSL59N10DPbF

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\begin{tabular}{ll} @ & Starting $T_J=25^\circ$C, $L=0.8mH$\\ $R_G=25\Omega, I_{AS}=35.4A.$ \end{tabular}$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $\ \ \, \ \, \ \,$ $\ \ \, \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\ \$ $\ \$ $\$
- © This is only applied to TO-220AB package
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice.

